

Figure 3. Solubility relations in the system NaCI-CsCI-H₂O at 50 °C. The dashed lines are experimentally determined tie lines (see Figure 1).

Figure 4. Solubility relations in the system NaCI-CsCI-H₂O at 75 °C. The dashed lines are experimentally determined tie lines (see Figure 2).

gravimetrically (2). The reported solution compositions (Table I) are accurate to ± 0.3 wt %.

Results are summarized in Figures 1 and 2 (solid symbols and solid lines) for 50 and 75 °C experiments, respectively. The solubilities of CsCl in H₂O are from Clynne and Potter (4). Also shown in these figures (open symbols and dashed lines) are the solubility relations given by Plyushchev et al. (3). The compositions of their solids were not determined. However, the existence of solid solutions between NaCl and CsCl was proposed. Their solubility data agree with our values to within ± 0.5 wt % at 50 °C and within ±0.8 wt % at 75 °C. The orientations of their solid-solution tie lines (dashed lines in Figures 1 and 2) agree very well with ours (solid lines) at 75 °C. However, the agreement at 50 °C is limited to the most CsCI-rich region only. The composition of their eutonic solution (the solution that coexists with two solids) agrees with that of ours to ± 0.37 wt % at 50 °C and to ± 0.73 wt % at 75 °C.

By combining our results here with the halite solubility data presented earlier (1), we were able to determine the solubility relations of the entire system at 50 and 75 °C. These relations are shown in Figures 3 and 4. At these temperatures, the new compound, CsCl·2NaCl·2H₂O, found at 25 °C (2) is not stable. However, the solid solutions, $[Cs_{1-x}(Na \cdot H_2O)_x]Cl$, remain stable at these temperatures. The maximum values for x are 0.352 at 50 °C and 0.325 at 75 °C, compared with a value of 0.427 at 25 °C (2).

Conclusion

The solubility relations in the system NaCl-CsCl-H₂O are determined at 50 and 75 °C. Our solubility data agree very well with the literature values (3). However, the relations between the solutions and the coexisting solids reported by Plyushchev et al. (3) are modified considerably in this study.

Registry No. Cesium chioride, 7647-17-8; sodium chioride, 7647-14-5.

Literature Cited

- (1) Chou, I. M.; Lee, R. D. J. Chem. Eng. Data, first of two preceding articles in this issue
- Chou, I. M.; Romankiw, L. A.; Evans, H. T.; Konnert, J. A. J. Chem. (2) Eng. Data, second of two preceding articles in this issue.
- Plyushchev, V. E.; Tulinova, V. B.; Kuznetsova, G. P.; Korovin, S. S.; (3) Shipetina, N. S. J. Inorg. Chem. (USSR) 1957, 2, 2654.
 (4) Clynne, M. A.; Potter, R. W., II. J. Chem. Eng. Data 1979, 24, 338.

Received for review December 27, 1982. Accepted May 31, 1983.

Vapor-Liquid Equilibria for the Ternary Systems Acetonitrile-2-Butanone-Benzene and Acetonitrile-Methanol-Benzene at 328.15 K

Tatsuhiko Ohta and Isamu Nagata*

Department of Chemical EngineerIng, Kanazawa University, Kanazawa, 920 Japan

Isothermal vapor-ilquid equilibrium data at 328.15 K are presented for the ternary systems

acetonitrile-2-butanone-benzene and acetonitrile-methanol-benzene, and three binary systems: 2-butanone-acetonitrile, 2-butanone-benzene, and acetonitrile-benzene. Experimental data are correlated by the Wilson and UNIQUAC equations and the UNIFAC method.

Introduction

Vapor-liquid equilibrium data at 328.15 K were obtained for the two ternary systems acetonitrile-2-butanone-benzene and acetonitrile-methanol-benzene, and three binary systems: 2-butanone-acetonitrile, 2-butanone-benzene, and acetonitrile-benzene with a Boublik still (1). Isothermal vapor-liquid equilibrium data for the binary systems have been published by several investigators: 2-butanone-acetonitrile (2); 2-buta-

Tabl	eΙ.	Physical	Constants (of Compounds
------	-----	----------	-------------	--------------

	density at 29	$98.15 \text{ K}, \text{g/cm}^3$	refractive ind	ex at 298.15 K	vapor press. at 328.15 K, kP	
compd	exptl	lit. ^a	exptl	lit. ^a	exptl	lit. ^a
acetonitrile	0.7767	0.7766	1.3416	1.34163	40.86	40.849 ^b
2-butanone	0.7999	0.7997	1.3762	1.3764	43.64	43.640
benzene	0.8735	0.87370	1.4979	1.49792	43.57	43.592
methanol	0.7868	0.78664	1.3265	1.32652	68.30	68.289

^a Reference 28. ^b Reference 29.

Table II.Experimental Vapor-Liquid Equilibrium Datafor Three Binary Systems at 328.15 K

<i>x</i> ₁	Y 1	P, kPa	γ_1	γ_2	Ψı	Ψ2
	2-	Butanone	(1)-Ace	tonitrile	(2)	
0.079	0.096	42.12	1.191	1.010	0.988	0.943
0.160	0.184	43.21	1.153	1.024	0.985	0.942
0.239	0.264	43.70	1.117	1.032	0.983	0.942
0.336	0.357	43.98	1.079	1.040	0.981	0.943
0.442	0.455	44.09	1.046	1.053	0.978	0.944
0.547	0.551	44.54	1.032	1.081	0.976	0.945
0.640	0.637	44.48	1.016	1.100	0.975	0.947
0.755	0.748	44.33	1.007	1.122	0.974	0.950
0.852	0.845	44.09	1.002	1.140	0.974	0.953
0.902	0.897	43.86	1.000	1.140	0.973	0.955
		2-Butano	ne (1)-B	enzene (2	2)	
0.060	0.072	44.69	1.234	1.012	0.977	0.981
0.159	0.174	45.65	1.148	1.028	0.976	0.981
0.278	0.293	46.50	1.124	1.044	0.974	0.981
0.400	0.400	46.74	1.071	1.072	0.973	0.981
0.499	0.489	46.70	1.048	1.093	0.973	0.982
0.608	0.591	46.37	1.032	1.111	0.973	0.982
0.708	0.688	46.14	1.026	1.133	0.972	0.983
0.809	0.788	45.64	1.018	1.165	0.972	0.984
0.911	0.901	44.64	1.011	1.144	0.973	0.985
		Acetonitr	ile (1)-B	enzene (S	2)	
0.062	0.127	47.88	2.465	1.022	0.971	0.981
0.074	0.149	48.62	2.455	1.024	0.968	0.981
0.125	0.216	50.58	2.177	1.039	0.962	0.981
0.207	0.296	52.41	1.852	1.069	0.954	0.983
0.290	0.355	53.78	1.618	1.124	0.949	0.984
0.336	0.388	54.28	1.536	1.152	0.947	0.985
0.350	0.398	54.46	1.517	1.162	0.946	0.986
0.449	0.455	54.90	1.357	1.254	0.942	0.988
0.554	0.517	54.46	1.236	1.367	0.939	0.992
0.706	0.610	52.68	1.104	1.629	0.937	0.997
0.819	0.700	50.36	1.044	1.958	0.937	1.004
0.053	0 803	44 10	1 007	2 3 2 7	0 041	1 017

none-benzene (3, 4); acetonitrile-benzene (5-7). The data at the same temperature have been reported for the two constituent binary systems: methanol-acetonitrile (8) and methanol-benzene (9). Ternary data reduction was made by the Wilson and UNIQUAC equations (10) and the UNIFAC method (11-13) with only parameters obtained from binary data.

Experimental Section

Materials. Guaranteed reagent-grade acetonltrile was used directly. C.P. 2-butanone was treated with saturated potassium carbonate solution, then dried over anhydrous sodium sulfate, and fractionally distilled. C.P. benzene was repeatedly recrystallized. C.P. methanol was fractionated in a glass distillation column packed with McMahon packing after storage over anhydrous calcium sulfate. Table I compares values of the densities, refractive indices, and vapor pressures of these materials with literature values.

Apparatus. Isothermal vapor-liquid equilibrium data were obtained with a Boublik still (1, 14). Further details on the still and experimental techniques were described previously (1). Vapor and liquid samples were analyzed by a Shimadzu Pulfrich refractometer at 298.15 K for the 2-butanone-benzene and acetonitrile-benzene systems and by a Shimadzu (GC-7A) gas

chromatograph connected to a Shimadzu (ITG-2A) digital integrator for the other systems. The errors of observed values are as follows: composition, 0.002 mole fraction; pressure, 13 Pa; temperature, 0.05 K.

Experimental Results and Data Analysis

Table II lists vapor-liquid equilibrium data for the three binary systems. Figures 1–3 compare experimental P-x-y data for the binary systems with those obtained by other authors (2–7). The present azeotropic data seem to be compatible with literature values. Tables III and IV include experimental results for the two ternary systems. The liquid-phase activity coefficients were calculated by considering vapor-phase nonideality

$$\gamma_{i} = \psi_{i} y_{i} P / \{ \psi_{i}^{s} x_{i} P_{i}^{s} \exp[v_{i}^{L} (P - P_{i}^{s}) / RT] \}$$
(1)

where the vapor pressures of pure components were taken from the experimental values in Table I. The vapor-phase fugacity coefficients were obtained from the virial equation of state truncated after the second term. The generalized method of Hayden and O'Connell (15) was used to estimate the second virial coefficients. The liquid molar volumes of each component were calculated by the modified Rackett equation (16). Further details on the numerical calculations of these properties are given in the monograph of Prausnitz et al. (10).

The activity coefficient for any component *i* in a multicomponent system is given as follows:

Wilson equation

$$\ln \gamma_i = 1 - \ln \sum_j x_j \Lambda_{ij} - \sum_k \frac{x_k \Lambda_{ki}}{\sum_i x_j \Lambda_{kj}}$$
(2)

where

$$\Lambda_{ij} = (v_j^{\rm L}/v_i^{\rm L}) \exp(-\Delta\lambda_{ij}/RT) \equiv (v_j^{\rm L}/v_i^{\rm L}) \exp(-a_{ji}/T) \qquad (3)$$

UNIQUAC equation (Anderson and Prausnitz's modification)

$$\ln \gamma_{i} = \ln (\phi_{i}/x_{i}) + 1 - \phi_{i}/x_{i} - (Z/2)q_{i} [\ln (\phi_{i}/\theta_{i}) + 1 - \phi_{i}/\theta_{i}] - q_{i}' \ln (\sum_{j} \theta_{j}'\tau_{jj}) + q_{i}' - q_{i}' \sum_{j} \frac{\theta_{j}'\tau_{ij}}{\sum_{k} \theta_{k}'\tau_{kj}}$$
(4)

where Z is the coordination number equal to 10 and

$$\tau_{ii} = \exp(-\Delta u_{ii}/RT) \equiv \exp(-a_{ii}/T)$$
 (5)

$$\phi_i = x_i r_i / \sum_i x_j r_j \tag{6}$$

$$\theta_i = x_i q_i / \sum_i x_j q_j \tag{7}$$

$$\theta_i' = x_i q_i' / \sum_i x_j q_j'$$
(8)

The value of q' for methanol is 0.96 and q' equals q for all other components (10, 17).

Binary Systems. The thermodynamic consistency test proposed by Christiansen and Fredenslund (18) was applied to the

Table III. Experimental Vapor-Liquid Equilibrium Data for the Ternary System Acetonitrile (1)-2-Butanone (2)-Benzene (3) at 328.15 K

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	У ₁	У 2	У 3	P, kPa	γ ₁	γ ₂	γ ₃	Ψ1	Ψ2	ψ3
0.327	0.347	0.326	0.343	0.295	0.362	49.73	1.280	0.965	1.277	0.948	0.970	0.989
0.243	0.463	0.294	0.262	0.407	0.331	48.74	1.294	0.979	1.267	0.951	0.970	0.987
0.297	0.258	0.445	0.326	0.213	0.461	50.53	1.364	0.952	1.207	0.949	0.969	0.987
0.448	0.305	0.247	0.438	0.261	0.301	49.22	1.177	0.963	1.392	0.944	0.971	0.993
0.105	0.550	0.345	0.125	0.510	0.365	47.09	1.391	0.998	1.147	0.958	0.971	0.984
0.338	0.106	0.556	0.373	0.083	0.544	52.74	1.428	0.941	1.190	0.947	0.968	0.986
0.548	0.358	0.094	0.523	0.339	0.138	46.81	1.091	1.018	1.606	0.943	0.975	1.000
0.152	0.304	0.544	0.194	0.268	0.538	49.02	1.552	0.987	1.115	0.958	0.970	0.983
0.549	0.154	0.297	0.513	0.125	0.362	51.13	1.164	0.948	1.448	0.941	0.971	0.994
0.298	0.559	0.143	0.305	0.518	0.177	46.34	1.166	0.983	1.329	0.949	0.973	0.991
0.104	0.456	0.440	0.130	0.418	0.452	47.60	1.479	0.997	1.124	0.960	0.971	0.984
0.451	0.109	0.440	0.447	0.084	0.469	52.89	1.280	0.929	1.304	0.943	0.968	0.990
0.444	0.455	0.101	0.436	0.427	0.137	46.98	1.128	1.011	1.484	0.944	0.974	0.996
0.055	0.706	0.239	0.065	0.676	0.259	46.01	1.351	1.008	1.148	0.959	0.972	0.985
0.239	0.065	0.696	0.307	0.052	0.641	52.06	1.650	0.949	1.102	0.953	0.968	0.984
0.697	0.250	0.053	0.655	0.252	0.093	45.22	1.037	1.051	1.866	0.942	0.979	1.006
0.053	0.293	0.654	0.080	0.279	0.641	47.92	1.810	1.044	1.077	0.967	0.972	0.981
0.652	0.056	0.292	0.581	0.045	0.374	51.85	1.123	0.952	1.547	0.939	0.971	0.997
0.292	0.647	0.061	0.298	0.623	0.079	44.89	1.126	0.991	1.350	0.949	0.974	0.993
0.110	0.154	0.736	0.168	0.141	0.691	48.97	1.865	1.025	1.055	0.963	0.971	0.982
0.766	0.099	0.135	0.684	0.092	0.224	48.17	1.046	1.029	1.877	0.939	0.977	1.005
0.155	0.740	0.105	0.167	0.709	0.124	45.17	1.202	0.991	1.233	0.954	0.973	0.989
0.056	0.066	0.878	0.105	0.068	0.827	47.42	2.236	1.119	1.024	0.971	0.973	0.981
0.894	0.051	0.055	0.828	0.055	0.117	44.88	1.013	1.120	2.262	0.941	0.983	1.014
0.086	0.860	0.054	0.093	0.843	0.064	44.74	1.197	1.004	1.225	0.956	0.973	0.988

Table IV. Experimental Vapor-Liquid Equilibrium Data for the Ternary System Acetonitrile (1)-Methanol (2)-Benzene (3) at 328.15 K

<i>x</i> ₁	x 2	<i>x</i> ₃	У 1	У ₂	У3	P, kPa	γ 1	γ 2	γ3	ψ1	Ψ2	ψ3
0.397	0.203	0.400	0.262	0.391	0.347	77.75	1.224	2.204	1.557	0.921	0.970	0.989
0.255	0.330	0.415	0.173	0.475	0.352	83.69	1.354	1.765	1.635	0.921	0.966	0.987
0.513	0.287	0.200	0.320	0.439	0.241	76.99	1.140	1.731	2.159	0.917	0.968	0.996
0.209	0.495	0.296	0.147	0.539	0.314	86.69	1.451	1.378	2.122	0.920	0.962	0.989
0.313	0.166	0.521	0.223	0.380	0.397	78.06	1.331	2.632	1.368	0.925	0.971	0.985
0.078	0.434	0.488	0.060	0.548	0.392	88.97	1.640	1.642	1.640	0.926	0.963	0.983
0.497	0.049	0.454	0.408	0.158	0.434	63.93	1.265	3.073	1.412	0.931	0.982	0.989
0.250	0.654	0.096	0.198	0.634	0.168	80.83	1.524	1.144	3.304	0.920	0.962	1.000
0.118	0.193	0.689	0.095	0.464	0.441	83.90	1.624	2.962	1.230	0.929	0.968	0.981
0.669	0.093	0.238	0.473	0.233	0.294	64.27	1.089	2.395	1.850	0.925	0.980	0.997
0.058	0.644	0.298	0.050	0.602	0.348	90.21	1.861	1.229	2.424	0.925	0.961	0.986
0.671	0.275	0.054	0.449	0.455	0.096	67.30	1.074	1.645	2.819	0.921	0.974	1.009
0.101	0.765	0.134	0.093	0.669	0.238	84.69	1.865	1.079	3.492	0.924	0.960	0.995
0.767	0.140	0.093	0.539	0.307	0.154	61.67	1.038	2.011	2.402	0.925	0.980	1.007
0.893	0.042	0.065	0.739	0.128	0.133	51.01	1.021	2.338	2.469	0.934	0.991	1.012
0.501	0.056	0.443	0.402	0.175	0.423	64.23	1.242	2.991	1.418	0.931	0.982	0.989
0.053	0.899	0.048	0.064	0.811	0.125	78.82	2.294	1.036	4.813	0.931	0.960	1.004

Figure 1. Comparison with published data for 2-butanone (1)-acetonitrile (2) system: (●, ▲) Experimental data. (---) Calculated by the Wilson equation; 333.67 K (ref 2); 328.15 K (this work). (---) Locus of azeotropes.

present experimental data. The absolute arithmetic mean deviations between the experimental and calculated vapor com-

Table V. Azeotropic Data for Binary Systems at 328.15 K

system	<i>x</i> ₁

system	<i>x</i> ₁	P, kPa	
2-butanone (1)-acetonitrile (2) 2-butanone (1)-benzene (2) acetonitrile (1)-benzene (2)	$0.574 \\ 0.435 \\ 0.456$	44.43 46.70 54.65	

positions for the three binary systems at 328.15 K are as follows: 2-butanone-acetonitrile, 0.003; 2-butanone-benzene, 0.006; acetonitrile-benzene, 0.008. These results suggest that the experimental data are thermodynamically consistent.

Azeotropic compositions and pressures obtained by interpolation of experimental values are listed in Table V.

A computer program used for binary parameter estimation is similar to that in detail described by Prausnitz et al. (10), which is based on the maximum likelihood principle. Table VI lists binary parameters together with the estimated variance of the fit. The binary parameters, a_{12} and a_{21} , obtained from the Wilson and UNIQUAC equations differ, not only in magnitudes but sometimes even in signs. These do not render contradictory results. There are many similar cases described by Gmehling et al. (19-27).

Ternary Systems. Table VII presents the predicted results for the two ternary systems. Calculated values by the Wilson

Table VI. Binary Parameters of Wilson and UNIQUAC (Anderson and Prausnitz's Modification) Equations and Variance of Fit at 328.15 K

system	no. of data points	eq	a ₁₂ , K	<i>a</i> 21, K	$\sigma_{\rm F}^2$	data source
2-butanone (1)-acetonitrile (2)	10	Wilson UNIQUAC	39.84 -0.05	99.54 56.53	$\begin{array}{r} 2.07 \\ 2.10 \end{array}$	this work
2-butanone (1)-benzene (2)	9	Wilson UNIQUAC	$-91.52 \\ -151.28$	$226.55 \\ 215.57$	6.68 6.06	this work
acetonitrile (1)-benzene (2)	12	Wilson UNIQUAC	$-22.66 \\ -65.18$	$426.75 \\ 279.09$	$10.65 \\ 11.87$	this work
methanol (1)-acetonitrile (2)	12	Wilson UNIQUAC	$114.47 \\ -19.32$	$245.86 \\ 341.04$	$4.93 \\ 5.19$	8
methanol (1)-benzene (2)	9	Wilson UNIQUAC	$\begin{array}{r} 88.42 \\ \mathbf{-62.35} \end{array}$	$924.69 \\ 980.24$	$\begin{array}{c} 4.82\\ 5.20\end{array}$	9

Table VII. Comparison of Prediction of Ternary Vapor-Liquid Equilibria for Two Systems at 328.15 K with Wilson and UNIQUAC (Anderson and Prausnitz's Modification) Equations and UNIFAC Group-Contribution Method

	no. of data	r deviatio	oot-mean-squa n in vapor mol	re e f ractio n	root-mean-square deviation in press., kPa		
system	points	Wilson	UNIQUAC	UNIFAC	Wilson	UNIQUAC	UNIFAC
acetonitrile (1)-2-butanone (2)-benzene (3)	25	0.005 0.003	0.005 0.004 0.003 0.003	0.008 0.005	0.34	0.29	0.59
acetonitrile (1)-methanol	17	0.006 0.006	$0.005 \\ 0.005$	$\begin{array}{c} 0.011 \\ 0.004 \end{array}$	0.46	0.56	1.58
(2)-benzene (3)		$0.007 \\ 0.005$	$0.006 \\ 0.005$	$0.010 \\ 0.010$			

Figure 2. Comparison with published data for 2-butanone (1)-benzene (2) system: (\bigoplus , \triangle , O, \triangle) Experimental data. (--) Calculated by the Wilson equation; 333.15, 323.15, and 313.15 K (ref *22*); 328.15 K (this work). (---) Locus of azeotropes.

and UNIQUAC equations are close to the experimental data. The table also shows that the UNIFAC method whose parameters are obtained from Skjold-Jørgensen et al. (13) works with good accuracy for the systems.

Figure 3. Comparison with published data for acetonitrile (1)-benzene (2) system: (Φ, A, O, Δ) Experimental data. (---) Calculated by the Wilson equation; 318.15 and 293.15 K (ref *25*); 328.15 K (this work). (---) Locus of azeotropes.

Acknowledgment

We are grateful to T. Murakami and H. Maki for their help in the experimental work and to the Data Processing Center, Kanazawa University, for the use of its facilities.

Glossary

- a_{ij} binary interaction parameter, K
- P total pressure, kPa
- P,^s vapor pressure of pure component i, kPa
- molecular-geometric area parameter for component q_i i
- q_i molecular-interaction area parameter for component i
- molecular volume parameter for pure component i r_i
- Ŕ gas constant, 8.314 J/(mol K)
- Τ absolute temperature, K
- V_i^L liquid molar volume of pure component i, cm³/mol
- liquid-phase mole fraction of component i X_{j}
- vapor-phase mole fraction of component / Y_i
- Ζ lattice coordination number, a constant set equal to 10

Greek Letters

γ_{i}	activity coefficient of component i
$\hat{\theta}_i$	area fraction defined by eq 7
θ_i'	area fraction defined by eq 8
$\dot{\Lambda}_{\mu}$	Wilson binary parameter
$\Lambda \lambda_{\#}$	Wilson binary interaction parameter, J/mol
$\Delta u''_{\prime\prime}$	UNIQUAC binary interaction parameter, J/mol
$\sigma_{\rm F}^{2^{\prime\prime}}$	variance of fit
τ_{\parallel}	UNIQUAC binary parameter
$\phi_i^{'}$	volume fraction defined by eq 6
ψ_i	fugacity coefficient of component i
ψ_i^{s}	fugacity coefficient of pure component <i>i</i> at system temperature and <i>P</i> ^s

Subscript

i component

Superscript

s saturation

Registry No. Acetonitrile, 75-05-8; 2-butanone, 78-93-3; benzene, 71-43-2; methanol. 67-56-1.

- **Literature Cited**
 - (1) Ohta, T.; Koyabu, J.; Nagata, I. Fluid Phase Equilib. 1981, 7, 65-73. (2) Dohnal, V.; Blahova, D.; Holub, R. Fluid Phase Equilib. 1982, 9, 187-200.
 - (3) Kraus, J.; Linek, J. Collect. Czech. Chem. Commun. 1971, 36, 2547-67
- (4) Zharov, V. T.; Malegina, N. D.; Morachevsky, A. G. Zh. Prikl. Khim.
- **1965**, *38*, 2132–4. (5) Brown, I.; Smith, F. Aust. J. Chem. **1955**, *8*, 62–7.
- (6) Palmer, D. A.; Smith, B. D. J. Chem. Eng. Data 1972, 17, 71–6.
 (7) Werner, G.; Schuberth, H. J. Prakt. Chem. 1966, 31, 225–336.
- Nagata, I.; Katoh, K.; Koyabu, J. Thermochim. Acta 1981, 47, (8) 225-33
- (9) Scatchard, G.; Wood, S. E.; Mochel, J. M. J. Am. Chem. Soc., 1946. 68, 1957-60.
- (10) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. "Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria"; Prentice-Hall: Englewood Cliffs, NJ, 1980; Chapters 3 and 4, Appendix D.
- 1960; Onapters 3 and 4, Appendix D.
 (11) Fredenslund, A.; Gmehling, J.; Rasmussen, P. "Vapor-Liquid Equilibria Using UNIFAC"; Elsevier: Amsterdam, 1977; Chapter 5.
 (12) Gmehling, J.; Rasmussen, P.; Fredenslund, A. Ind. Eng. Chem. Pro-cess Des. Dev. 1982, 21, 118-27.
 (13) Skield Jargeners, S.; Kollas, B.; Carthing, M. Dauman, S.; Kallas, B.; Carthing, M. S.; Status, S.; Statu
- (13) Skjold-Jørgensen, S.; Kolbe, B.; Gmehling, J.; Rasmussen, P. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 714–22.
 (14) Boublik, T.; Benson, G. C. Can. J. Chem. 1969, 47, 539–42.
- (15) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209-16.
- (16) Spencer, C. F.; Danner, R. P. J. Chem. Eng. Data 1972, 17, 236-41. Anderson, T. F.; Prausinitz, J. M. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 552–61. (17)

- (18) Christiansen, L. J.; Fredenslund, A. AIChE J. 1975, 21, 49–57.
 (19) Gmehling, J.; Onken, U. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1977; Vol. I, Part 1.
 (20) Gmehling, J.; Onken, U. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1977; Vol. I, Part 2a.
- (21) Gmehling, J.; Onken, U.; Arlt, W. "Vapor-Liquid Equilibrium Data
- Collection"; DECHEMA: Frankfurt/Main, 1978; Vol. I, Part 2b. (22) Gmehling, J.; Onken, U.; Arlt, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1979; Vol. I, Parts 3 and 4, pp 285-7, 293.
- Gmehling, J.; Onken, U.; Arit, W. "Vapor-Liquid Equilibrium Data (23)
- (2) Grineling, J.; Orken, S.; Alt, W. Vapol-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1980; Vol. I, Part 6a.
 (24) Greenling, J.; Orken, U.; Artt, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1980; Vol. I, Part 6b.
 (25) Greenling, J.; Orken, U.; Artt, W. "Vapor-Liquid Equilibrium Data
- Collection"; DECHEMA: Frankfurt/Main, 1980; Vol. I, Part 7, pp 122, 126, 131.
- (26) Graehling, J.; Onken, U.; Arlt, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1980; Vol. I, Part 1a.
 (27) Graehling, J.; Onken, U.; Arlt, W. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA: Frankfurt/Main, 1982; Vol. I, Part 2c.
 (28) Riddick, J. A.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wiley-Interscience: New York, 1970; pp 107, 145, 243, 399.
 (29) Brown, I.; Smith, E. *Aust. J. Chem.* 1954, *Z*, 269-72.

- (29) Brown, I.; Smith, F. Aust. J. Chem. 1954, 7, 269-72.

Received for review July 2, 1982. Revised manuscript received January 3, 1983. Accepted April 9, 1983.

Ultrasonic Velocity in Binary Mixtures of Alkylbenzenes at 25 $^{\circ}$ C

G. Vitall* and G. Giola Lobbia

Dipartimento di Scienze Chimiche, Università degli Studi, 62032 Camerino, Italy

Density and ultrasonic velocity values in the frequency range 2.5-15 MHz at 25 °C were measured for binary mixtures of ethylbenzene, o-xylene, m-xylene, and p-xylene. Our data were discussed and compared, where possible, with those found in the literature.

Introduction

Ultrasonic velocity data are of increasing interest in physical chemistry because, as described in the literature (1-7), they are the basis of structural studies of liquids. In fact, quantities such as internal pressure and adiabatic compressibility depend

on the liquid structure, the extent of molecular interaction (8), and the intermolecular free path (5) and they may be calculated by using ultrasonic velocity data (9). Compressibility is one of the fundamental measurements for calculating reduction parameters in the state equation according to Flory statistics (1, 7, 10, 11). In the course of physicochemical investigations of organic systems being carried out in this department (1, 12, 13), we measured the ultrasonic velocities of mixtures of alkylbenzenes, for use in successive physicochemical studies.

Experimental Section

The interferometric method employed for the measurement of ultrasonic velocity is described elsewhere (3, 4). The